Luminy–HughWoodin:UltimateL(I)
TheXIInternationalWorkshoponSetTheorytookplaceOctober4-8,2010.ItwashostedbytheCIRM,inLuminy,France.IamverygladIwasinvited,sinceitwasagreatexperience:TheWorkshophasatraditionofexcellence,andthistimewasnoexception,withseveralverynicetalks.Ihadthechancetogiveatalk(availablehere)andtointeractwiththeotherparticipants.Thereweretwomini-courses,onebyBenMillerandonebyHughWoodin.Benhasmadetheslidesofhisseriesavailableathiswebsite.
WhatfollowsaremynotesonHugh’stalks.Needlesstosay,anymistakesaremine.Hugh’stalkstookplaceonOctober6,7,and8.Thoughthetitleofhismini-coursewas“Longextenders,iterationhypotheses,andultimateL”,Ithinkthat“UltimateL”reflectsmostcloselythecontent.ThetalkswerebasedonatinyportionofamanuscriptHughhasbeenwritingduringthelastfewyears,originallytitled“Suitableextendersequences”andmorerecently,“Suitableextendermodels”which,unfortunately,isnotcurrentlypubliclyavailable.
ThegeneralthemeisthatappropriateextendermodelsforsupercompactnessshouldprovablybeanultimateversionoftheconstructibleuniverseL.Theresultsdiscussedduringthetalksaimatsupportingthisidea.
UltimateL
Advertisements
REPORTTHISAD
I
Letδbesupercompact.ThebasicproblemthatconcernsusiswhetherthereisanL-likeinnermodelN\subseteqVwithδsupercompactinN.
Ofcourse,theshapeoftheanswerdependsonwhatwemeanby“L-like”.Thereareseveralpossiblewaysofmakingthisnontrivial.Here,weonlyadopttheverygeneralrequirementthatthesupercompactnessofδinNshould“directlytraceback”toitssupercompactnessinV.
Recall:
WeuseP_δ(X)todenotetheset\{a\subseteqX\mid|a|<δ\}.
Anultrafilter(ormeasure)UonP_δ(λ)isfineiffforall\alpha<λwehave\{a\inP_δ(λ)\mid\alpha\ina\}\inU.
TheultrafilterUisnormaliffitisδ-completeandforallF:P_δ(λ)oλ,ifFisregressiveU-ae(i.e.,if\{a\midF(a)\ina\}\inU)thenFisconstantU-ae,i.e.,thereisan\alpha<λsuchthat\{a\midF(a)=\alpha\}\inU.
δissupercompactiffforallλthereisanormalfinemeasureUonP_δ(λ).
Itisastandardresultthatδissupercompactiffforallλthereisanelementaryembeddingj:VoMwith{mcp}(j)=δ,j(δ)>λ,andj‘λ\inM(or,equivalently,{}^λM\subseteqM).
Infact,givensuchanembeddingj,wecandefineanormalfineUonP_δ(λ)by
A\inUiffj‘λ\inj(A).
Conversely,givenanormalfineultrafilterUonP_δ(λ),theultrapowerembeddinggeneratedbyUisanexampleofsuchanembeddingj.Moreover,ifU_jistheultrafilteronP_δ(λ)derivedfromjasexplainedabove,thenU_j=U.
AnothercharacterizationofsupercompactnesswasfoundbyMagidor,anditwillplayakeyroleintheselectinthisreformulation,ratherthanthecriticalpoint,δappearsastheimageofthecriticalpointsoftheembeddingsunderconsideration.Thisversionseemsideallydesignedtobeusedasaguideintheconstructionofextendermodelsforsupercompactness,althoughrecentresultssuggestthatthisis,infact,aredherring.
Thekeynotionwewillbestudyingisthefollowing:
Definition.N\subseteqVisaweakextendermodelfor`δissupercompact’iffforallλ>δthereisanormalfineUonP_δ(λ)suchthat:
P_δ(λ)\capN\inU,and
U\capN\inN.
ThisdefinitioncouplesthesupercompactnessofδinNdirectlywithitssupercompactnessinV.Inthemanuscript,thatNisaweakextendermodelfor`δissupercompact’isdenotedbyo^N_{mlong}(δ)=\infty.Notethatthisisaweaknotionindeed,inthatwearenotrequiringthatN=L[\vecE]forsome(long)sequence\vecEofextenders.TheideaistostudybasicpropertiesofNthatfollowfromthisnotion,inthehopesofbetterunderstandinghowsuchanL[\vecE]modelcanactuallybeconstructed.
Forexample,finenessofUalreadyimpliesthatNsatisfiesaversionofcovering:IfA\subseteqλand|A|<δ,thenthereisaB\inP_{δ}(λ)\capNwithA\subseteqB.Butinfactasignificantlystrongerversionofcoveringholds.Toproveit,wefirstneedtorecallaniceresultduetoSolovay,whousedittoshowthat{\sfSCH}holdsaboveasupercompact.
Solovay’sLemma.Letλ>δberegular.ThenthereisasetXwiththepropertythatthefunctionf:a\mapsto\sup(a)isinjectiveonXand,foranynormalfinemeasureUonP_δ(λ),X\inU.
ItfollowsfromSolovay’slemmathatanysuchUisequivalenttoameasureonordinals.
Proof.Let\vecS=\left<S_\alpha\mid\alpha<λight>beapartitionofS^λ_\omegaintostationarysets.
(WecouldjustaswelluseS^λ_{\le\gamma}foranyfixed\gamma<δ.Recallthat
S^λ_{\le\gamma}=\{\alpha<λ\mid{mcf}(\alpha)\le\gamma\}
andsimilarlyforS^λ_\gamma=S^λ_{=\gamma}andS^λ_{<\gamma}.)
Itisawell-knownresultofSolovaythatsuchpartitionsexist.
Hughactuallygaveaquicksketchofacrazyproofofthisfact:Otherwise,attemptingtoproducesuchapartitionoughttofail,andwecanthereforeobtainaneasilydefinableλ-completeultrafilter{\mathcalV}onλ.Thedefinabilityinfactensuresthat{\mathcalV}\inV^λ/{\mathcalV},contradiction.Wewillencounterasimilardefinablesplittingargumentinthethirdlecture.
LetXconsistofthosea\inP_δ(λ)suchthat,letting\beta=\sup(a),wehave{mcf}(\beta)>\omega,and
a=\{\alpha<\beta\midS_\alpha\cap\betaisstationaryin\beta\}.
Thenfis1-1onXsince,bydefinition,anya\inXcanbereconstructedfrom\vecSand\sup(a).AllthatneedsarguingisthatX\inUforanynormalfinemeasureUonP_δ(λ).(ThisshowsthattodefineU-measure1sets,weonlyneedapartition\vecSofS^λ_\omegaintostationarysets.)
Letj:VoMbetheultrapowerembeddinggeneratedbyU,so
U=\{A\inP_δ(λ)\midj‘λ\inj(A)\}.
Weneedtoverifythatj‘λ\inj(X).First,notethatj‘λ\inM.Lettingau=\sup(j‘λ),wethenhavethatM\models{mcf}(au)=λ.Since
M\modelsj(λ)\geauisregular,
itfollowsthatau<j(λ).Let\left<T_\beta\mid\beta<j(λ)ight>=j(\left<S_\alpha\mid\alpha<λight>).InM,theT_\betapartitionS^{j(λ)}_\omegaintostationarysets.Let
A=\{\beta
【在阅读模式下不能自动加载下一页,请<退出阅读模式>后点击下一页阅读。】