AcardinalκisaBerkeleycardinal,ifforanytransitivesetMwithκ∈Mandanyordinalα<κthereisanelementaryembeddingj:MMwithα<critj<κ.ThesecardinalsaredefinedinthecontextofZFsettheorywithouttheaxiomofchoice.
TheBerkeleycardinalsweredefinedbyW.HughWoodininabout1992athisset-theoryseminarinBerkeley,withJ.D.Hamkins,A.Lewis,D.Seabold,G.HjorthandperhapsR.Solovayintheaudience,amongothers,issuedasachallengetorefuteaseeminglyover-stronglargecardinalaxiom.Nevertheless,theexistenceofthesecardinalsremainsunrefutedinZF.
IfthereisaBerkeleycardinal,thenthereisaforcingextensionthatforcesthattheleastBerkeleycardinalhascofinalityω.ItseemsthatvariousstrengtheningsoftheBerkeleypropertycanbeobtainedbyimposingconditionsonthecofinalityofκ(Thelargercofinality,thestrongertheoryisbelievedtobe,uptoregularκ).IfκisBerkeleyanda,κ∈MforMtransitive,thenforanyα<κ,thereisaj:MMwithα<critj<κandj(a)=a.
Acardinalκiscalledproto-BerkeleyifforanytransitiveMκ,thereissomej:MMwithcritj<κ.Moregenerally,acardinalisα-proto-BerkeleyifandonlyifforanytransitivesetMκ,thereissomej:MMwithα<critj<κ,sothatifδ≥κ,δisalsoα-proto-Berkeley.Theleastα-proto-Berkeleycardinaliscalledδα.
WecallκaclubBerkeleycardinalifκisregularandforallclubsCκandalltransitivesetsMwithκ∈Mthereisj∈E(M)withcrit(j)∈C.
WecallκalimitclubBerkeleycardinalifitisaclubBerkeleycardinalandalimitofBerkeleycardinals.
Relations
IfκistheleastBerkeleycardinal,thenthereisγ<κsuchthat(Vγ,Vγ+1)ZF2+“ThereisaReinhardtcardinalwitnessedbyjandanω-hugeaboveκω(j)”(Vγ,Vγ+1)ZF2+“ThereisaReinhardtcardinalwitnessedbyjandanω-hugeaboveκω(j)”.
Foreveryα,δαisBerkeley.ThereforeδαistheleastBerkeleycardinalaboveα.
Inparticular,theleastproto-Berkeleycardinalδ0isalsotheleastBerkeleycardinal.
IfκisalimitofBerkeleycardinals,thenκisnotamongtheδα.
EachclubBerkeleycardinalistotallyReinhardt.
TherelationbetweenBerkeleycardinalsandclubBerkeleycardinalsisunknown.
IfκisalimitclubBerkeleycardinal,then(Vκ,Vκ+1)“ThereisaBerkeleycardinalthatissuperReinhardt”.Moreover,theclassofsuchcardinalsarestationary.
ThestructureofL(Vδ+1)
IfδisasingularBerkeleycardinal,DC(cf(δ)+),andδisalimitofcardinalsthemselveslimitsofextendiblecardinals,thenthestructureofL(Vδ+1)issimilartothestructureofL(Vλ+1)undertheassumptionλi.e.thereissomej:L(Vλ+1)L(Vλ+1).Forexample,Θ=ΘL(Vδ+1)Vδ+1,thenΘisastronglimitinL(Vδ+1),δ+isregularandmeasurableinL(Vδ+1),andΘisalimitofmeasurablecardinals.
【在阅读模式下不能自动加载下一页,请<退出阅读模式>后点击下一页阅读。】